Steinhardtite, a new body-centered-cubic allotropic form of aluminum from the Khatyrka CV3 carbonaceous chondrite
نویسندگان
چکیده
Steinhardtite is a new mineral from the Khatyrka meteorite; it is a new allotropic form of aluminum. It occurs as rare crystals up to ~10 μm across in meteoritic fragments that contain evidence of a heterogeneous distribution of pressures and temperatures during impact shock, in which some portions of the meteorite reached at least 5 GPa and 1200 °C. The meteorite fragments contain the high-pressure phases ahrensite, coesite, stishovite, and an unnamed spinelloid with composition Fe3–xSixO4 (x ≈ 0.4). Other minerals include trevorite, Ni-Al-Mg-Fe spinels, magnetite, diopside, forsterite, clinoenstatite, nepheline, pentlandite, Cu-bearing troilite, icosahedrite, khatyrkite, cupalite, taenite, and Al-bearing taenite. Given the exceedingly small grain size of steinhardtite, it was not possible to determine most of the physical properties for the mineral. A mean of 9 electron microprobe analyses (obtained from two different fragments) gave the formula Al0.38Ni0.32Fe0.30, on the basis of 1 atom. A combined TEM and single-crystal X-ray diffraction study revealed steinhardtite to be cubic, space group Im3m, with a = 3.0214(8) Å, and V = 27.58(2) Å3, Z = 2. In the crystal structure [R1 = 0.0254], the three elements are disordered at the origin of the unit cell in a body-centered-cubic packing (α-Fe structure type). The five strongest powder-diffraction lines [d in Å (I/I0) (hkl)] are: 2.1355 (100) (110); 1.5100 (15) (200); 1.2329 (25) (211); 0.9550 (10) (310); 0.8071 (30) (321). The new mineral has been approved by the IMA-NMNC Commission (2014-036) and named in honor of Paul J. Steinhardt, Professor at the Department of Physics of Princeton University, for his extraordinary and enthusiastic dedication to the study of the mineralogy of the Khatyrka meteorite, a unique CV3 carbonaceous chondrite containing the first natural quasicrystalline phase icosahedrite. The recovery of the polymorph of Al described here that contains essential amounts of Ni and Fe suggests that Al could be a contributing candidate for the anomalously low density of the Earth’s presumed Fe-Ni core.
منابع مشابه
Natural quasicrystal with decagonal symmetry
We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38...
متن کاملKhatyrka, a new CV3 find from the Koryak Mountains, Eastern Russia
A new meteorite find, named Khatyrka, was recovered from eastern Siberia as a result of a search for naturally occurring quasicrystals. The meteorite occurs as clastic grains within postglacial clay-rich layers along the banks of a small stream in the Koryak Mountains, Chukotka Autonomous Okrug of far eastern Russia. Some of the grains are clearly chondritic and contain Type IA porphyritic oliv...
متن کاملDecagonite, Al71Ni24Fe5, a quasicrystal with decagonal symmetry from the Khatyrka CV3 carbonaceous chondrite
Decagonite is the second natural quasicrystal, after icosahedrite (Al63Cu24Fe13), and the first to exhibit the crystallographically forbidden decagonal symmetry. It was found as rare fragments up to ~60 mm across in one of the grains (labeled number 126) of the Khatyrka meteorite, a CV3 carbonaceous chondrite. The meteoritic grain contains evidence of a heterogeneous distribution of pressures a...
متن کاملImpact-induced shock and the formation of natural quasicrystals in the early solar system.
The discovery of a natural quasicrystal, icosahedrite (Al63Cu24Fe13), accompanied by khatyrkite (CuAl2) and cupalite (CuAl) in the CV3 carbonaceous chondrite Khatyrka has posed a mystery as to what extraterrestrial processes led to the formation and preservation of these metal alloys. Here we present a range of evidence, including the discovery of high-pressure phases never observed before in a...
متن کاملCollisions in outer space produced an icosahedral phase in the Khatyrka meteorite never observed previously in the laboratory
We report the first occurrence of an icosahedral quasicrystal with composition Al62.0(8)Cu31.2(8)Fe6.8(4), outside the measured equilibrium stability field at standard pressure of the previously reported Al-Cu-Fe quasicrystal (AlxCuyFez, with x between 61 and 64, y between 24 and 26, z between 12 and 13%). The new icosahedral mineral formed naturally and was discovered in the Khatyrka meteorite...
متن کامل